hydrostatics is the branch of fluid mechanics that studies "fluids at rest and the pressure in a fluid or exerted by a fluid on an immersed body".[1]
It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics, the study of fluids in motion. Hydrostatics are categorized as a part of the fluid statics, which is the study of all fluids, incompressible or not, at rest.
Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. It is also relevant to geophysics and astrophysics (for example, in understanding plate tectonics and the anomalies of the Earth's gravitational field), to meteorology, to medicine (in the context of blood pressure), and many other fields.
Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of still water is always level.
HISTORY -
Some principles of hydrostatics have been known in an empirical and intuitive sense since antiquity, by the builders of boats, cisterns, aqueducts and fountains. Archimedes is credited with the discovery of Archimedes' Principle, which relates the buoyancy force on an object that is submerged in a fluid to the weight of fluid displaced by the object. The Roman engineer Vitruvius warned readers about lead pipes bursting under hydrostatic pressure.[2]
The concept of pressure and the way it is transmitted by fluids was formulated by the French mathematician and philosopher Blaise Pascal in 1647.
HYDRO-STATICS IN ANCIENT GREECE AND ROME
The "fair cup" or Pythagorean cup, which dates from about the 6th century BC, is a hydraulic technology whose invention is credited to the Greek mathematician and geometer Pythagoras. It was used as a learning tool.
The cup consists of a line carved into the interior of the cup, and a small vertical pipe in the center of the cup that leads to the bottom. The height of this pipe is the same as the line carved into the interior of the cup. The cup may be filled to the line without any fluid passing into the pipe in the center of the cup. However, when the amount of fluid exceeds this fill line, fluid will overflow into the pipe in the center of the cup. Due to the drag that molecules exert on one another, the cup will be emptied.
Pythagorean Cup
No comments:
Post a Comment
if you have any doubts, please let me know .